Generic and Specific Impressions Estimation and Their Application to KANSEI-Based Clothing Fabric Image Retrieval

Author:

Chen Yen-Wei12ORCID,Huang Xinyin3,Chen Dingye1,Han Xian-Hua4

Affiliation:

1. College of Information Science and Engineering, Ritsumeikan University, Kusatsu, Gunma, Japan

2. College of Computer Science and Technology, Zhejiang University, Zhejiang, P. R. China

3. School of Education, Soochow University, Suzhou, Jiangsu, P. R. China

4. Artificial Intelligence Research Center, Yamaguchi University, Yamaguchi, Japan

Abstract

Current image retrieval techniques are mainly based on text or visual contents. However, both text-based and contents-based methods lack the capability of utilizing human intuition and KANSEI (impression). In this paper, we proposed an impression-based image retrieval method in order to realize the image retrieval according to our impression presented by impression keywords. We first propose a generic and specific impressions estimation method based on machine learning and then apply it to impression-based clothing fabric image retrieval. We use a semantic differential (SD) method to measure the user’s impressions such as brightness and warmth while they view a cloth fabric image. We also extract both global and local features of cloth fabric images such as color and texture using computer vision techniques. Then we use support vector regression to model the mapping functions between the generic impression (or specific impression) and image features. The learnt mapping functions are used to estimate the generic and specific impressions of cloth fabric images. The retrieval is done by comparing the query impression with the estimated impression of images in the database.

Funder

Japanese MEXT Support Program for the Strategic Research Foundation at Private Universities

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3