USING RESTRICTED RANDOM WALKS FOR LIBRARY RECOMMENDATIONS AND KNOWLEDGE SPACE EXPLORATION

Author:

FRANKE MARKUS1,GEYER-SCHULZ ANDREAS1

Affiliation:

1. Information Systems and Management, Universität Karlsruhe (TH), Kaiserstr. 12, 76131 Karlsruhe, Germany

Abstract

Implicit recommender systems provide a valuable aid to customers browsing through library corpora. We present a method to realize such a recommender especially for, but not limited to, libraries. The method is cluster-based, scales well for large collections, and produces recommendations of good quality. The approach is based on using session histories of visitors of the library's online catalog in order to generate a hierarchy of nondisjunctive clusters. Depending on the user's needs, the clusters at different levels of the hierarchy can be employed as recommendations. Using the prototype of a user interface we show that, if, for instance, the user is willing to sacrifice some precision in order to gain a higher number of documents during a specific session, he or she can do so easily by adjusting the cluster level via a slider.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An anatomization of research paper recommender system: Overview, approaches and challenges;Engineering Applications of Artificial Intelligence;2023-02

2. Research-paper recommender systems: a literature survey;International Journal on Digital Libraries;2015-07-26

3. An update algorithm for restricted random walk clustering for dynamic data sets;Advances in Data Analysis and Classification;2009-06

4. Recommender Services in Scientific Digital Libraries;Studies in Computational Intelligence;2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3