Energy-Aware and Deadline-Constrained Task Allocation in Game-Based Mobile Cloud

Author:

Yang Zhuoxi1,Ding Yan2,Zhao Jia2ORCID

Affiliation:

1. College of Software, Beihang University, Beijing, P. R. China

2. Artificial Intelligence Institute of Technology & School of Computer Technology and Engineering, Changchun Institute of Technology Changchun, P. R. China

Abstract

A mobile community can be composed of multiple mobile devices through D2D (Device-to-Device) network. In many cases, these mobile devices cannot conveniently connect to the Internet, for various reasons. To overcome this obstacle, one solution is to let the mobile devices cooperate with each other through a D2D-enabled network, forming a mobile community that, as a whole, may be able to autonomously execute the tasks requested by its members. To maximize the overall benefits of mobile communities, this paper proposes a novel task allocation approach, EDTG (Energy-aware and Deadline-constrained Task allocation using Game theory). In mobile communities, energy consumption is responsible for the largest part of the cost. Energy management can lead to performance degradation and even be perceived as a bottleneck, while load balancing between devices can improve service performance and resource utilization to the largest extent. EDTG has considered both the inevitable performance constraints at each device and a method based on the connectivity of graph theory, in order to narrow down the search scope of optimal target mobile devices where requested tasks can be executed. The “Bargaining Game” method is designed and exploited to obtain the final task allocation solution. Final experimental results demonstrate that compared to existing approaches, EDTG ensures high-performance task execution and reaches the goal of maximizing the overall benefits to some extent, by achieving better energy savings and exploiting load balancing between devices.

Funder

National Natural Science Foundation of China

The 13th Five-Year Plan Key Science and Technology Research Projects of Jilin Provincial Education Office

The Theme Fund of Changchun Institute of Technology

The Key R & D Project of Jilin Province Science and Technology Development Plan

The Industrial Technology R & D Special Project of Jilin Provincial Development and Reform Commission

The Fourth Batch of Jilin Province Youth S & T Talent Lift Project

The Scientific Research Initiation Fund for Doctoral Innovation Team

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3