Affiliation:
1. University of Vienna, Department of Analytical Chemistry and Food Chemistry, Währinger Straße 38, Vienna, A1090 Vienna, Austria
Abstract
Chemical sensor layers for environmental applications require optimal selectivity, sensitivity, and long term stability, which can be achieved in artificial matrices. For detecting thiols in air, reversible affinity interactions can be optimized by varying the stoichiometry of molybdenum disulphide nanoparticles to achieve sulphur deficiencies. Generating MoS1.9 increases the quartz crystal microbalance (QCM) sensor responses towards butane thiol by a factor of three. Artificial recognition sites are accessible by molecular imprinting: acrylate copolymers can be tuned in polarity to interact selectively with atrazine in water leading to detection limits below one ppb with QCM sensors. Finally, sensor arrays coated with six different molecularly imprinted polymers (MIP) correctly reproduce the ethyl acetate concentration of a composter over a period of two weeks validated by GC-MS measurements.
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献