A BIO-INSPIRED POLYDOPAMINE APPROACH TO PREPARATION OF GOLD-COATED Fe3O4 CORE–SHELL NANOPARTICLES: SYNTHESIS, CHARACTERIZATION AND MECHANISM

Author:

AN PENG12,ZUO FANG3,LI XINHUA3,WU YUANPENG4,ZHANG JUNHUA5,ZHENG ZHAOHUI2,DING XIAOBIN2,PENG YUXING2

Affiliation:

1. State Key Laboratory of Polymer Materials and Engineering of China, Polymer Research Institute, Sichuan University Chengdu 610065, P. R. China

2. Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China

3. College of Chemistry & Environment Protection Engineering, Southwest University for Nationalities, Chengdu 610041, P. R. China

4. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, P. R. China

5. State Key Laboratory of Polymer Materials and Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, P. R. China

Abstract

A biomimetic and facile approach for integrating Fe 3 O 4 and Au with polydopamine (PDA) was proposed to construct gold-coated Fe 3 O 4 nanoparticles ( Fe 3 O 4@ Au – PDA ) with a core–shell structure by coupling in situ reduction with a seed-mediated method in aqueous solution at room temperature. The morphology, structure and composition of the core–shell structured Fe 3 O 4@ Au – PDA nanoparticles were characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD) and X-ray photoelectron spectrometry (XPS). The formation process of Au shell was assessed using a UV-Vis spectrophotometer. More importantly, according to investigating changes in PDA molecules by Fourier transform infrared spectroscopy (FTIR) and in preparation process of the zeta-potential data of nanoparticles, the mechanism of core–shell structure formation was proposed. Firstly, PDA-coated Fe 3 O 4 are obtained using dopamine (DA) self-polymerization to form thin and surface-adherent PDA films onto the surface of a Fe 3 O 4 "core". Then, Au seeds are attached on the surface of PDA-coated Fe 3 O 4 via electrostatic interaction in order to serve as nucleation centers catalyzing the reduction of Au 3+ to Au 0 by the catechol groups in PDA. Accompanied by the deposition of Au , PDA films transfer from the surface of Fe 3 O 4 to that of Au as stabilizing agent. In order to confirm the reasonableness of this mechanism, two verification experiments were conducted. The presence of PDA on the surface of Fe 3 O 4@ Au – PDA nanoparticles was confirmed by the finding that glycine or ethylenediamine could be grafted onto Fe 3 O 4@ Au – PDA nanoparticles through Schiff base reaction. In addition, Fe 3 O 4@ Au – DA nanoparticles, in which DA was substituted for PDA, were prepared using the same method as that for Fe 3 O 4@ Au – PDA nanoparticles and characterized by UV-Vis, TEM and FTIR. The results validated that DA possesses multiple functions of attaching Au seeds as well as acting as both reductant and stabilizing agent, the same functions as those of PDA.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,General Materials Science

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3