Size-Dependent Thermodynamic Properties of the Reaction of Nano-ZnO with Benzoic Acid

Author:

Wang Shuting1,Cui Zixiang1,Xue Yongqiang1

Affiliation:

1. Taiyuan University of Technology, Taiyuan 030024, P. R. China

Abstract

Studying the thermodynamic properties of the reaction of nanoparticle with organic substance is significant for the application of nanomaterial in organic fields. In this work, by using the reaction of nano- ZnO with different particle sizes with benzoic acid as a research system, the size-dependent standard equilibrium constant and reaction thermodynamic properties were analyzed theoretically, and the influence regularities of the particle size on the standard equilibrium constant and the reaction thermodynamic properties were studied. The excellent agreement between the experimental results and theoretical analysis shows that the particle size has remarkable influence on the standard equilibrium constant and the thermodynamic properties of the reaction; with the decrease of the particle size, the standard equilibrium constant increases, while the standard molar reaction Gibbs energy, the standard molar reaction enthalpy and the standard molar reaction entropy decrease. Furthermore, the logarithm of the standard equilibrium constant and the thermodynamic properties present linear relations with the reciprocal of the particle diameter, respectively. The theory and the influence regularities will provide useful tools to lead better and broader application of nanomaterial in organic fields.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3