Affiliation:
1. College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, P. R. China
Abstract
Carbon nanotubes (CNTs) were welded on the surface of thermoplastic polypropylene (PP) substrate by laser irradiation and then manganese dioxide (MnO2) was deposited on the surface of CNTs by electrochemical method to prepare CNTs/MnO2 flexible electrodes (L-CM). The microstructure and morphology of CNTs/MnO2 composites were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The results showed that CNTs were welded on the surface of the substrate, adhering to each other to form a porous network structure. In addition, there were distinct small protrusions on the surface of CNTs, indicating that MnO2 had been successfully deposited on the surface of CNTs. Cyclic voltammogram (CV), galvanostatic charge/discharge (GCD) and electrochemical impedance spectroscopy (EIS) techniques were employed to investigate the electrochemical performance of the composites. Compared with CNTs/MnO2 composite prepared via compaction (denoted as C-CM), L-CM composite prepared under the laser power of 0.75[Formula: see text]W (denoted as L-CM75) showed a larger capacitance of 214.6[Formula: see text]F[Formula: see text]g[Formula: see text] at the current density of 0.5[Formula: see text]A[Formula: see text]g[Formula: see text] and displayed excellent bendability, demonstrating capacitance retention of approximately 89.6% after 1000 bending cycles. The excellent performance of L-CM75 may be attributed to the fact that the CNTs welded on the substrate have formed an effective conductive network whose porous structure can facilitate easy access of electrolytes to the electrode, which results in enhancement of the electrochemical performance of L-CM75.
Funder
National Natural Science Foundation of China
Zhejiang Province Public Welfare Technology Application Research Project
the Scientific and Technological Fund from Quzhou Science and Technology Bureau
the Scientific Research Startup Project of Quzhou University
the Domestic Visitor Professional Development Project
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献