Fabrication of Porous MoS2 with Controllable Morphology and Specific Surface Area for Hydrodeoxygenation

Author:

Zhang Zhenwi1,Yue Chuanjun1,Hu Jianhen2

Affiliation:

1. College of Mathematics, Science and Chemical Engineering, Changzhou Institute of Technology, Liaohe Road 666#, Changzhou Jiangsu, P. R. China

2. College of Chemistry and Chemical Engineering, Changzhou University, Gehu Road 1#, Changzhou Jiangsu, P. R. China

Abstract

SiO2 nanoparticles modified with aminopropyl-triethoxysilane (APTES) were used as hard templates for preparing porous MoS2. The method offers the advantages of simple steps, convenient operation, controllable pore size, and a specific surface area. Two morphologies of MoS2 were obtained by using thiourea and L-cysteine as sulfur sources, respectively. Porous MoS2 prepared by using thiourea had a smooth surface, whereas the surface of porous MoS2 prepared with L-cysteine had many burrs. The MoS2 nanomaterials with the respective morphologies were used to catalyze the hydrodeoxygenation (HDO) reaction. The activity of MoS2 prepared with L-cysteine was lower than that prepared with thiourea. Transmission electron microscopy and X-ray diffraction analyses showed that MoS2 had a large sheet-shaped structure and high crystallinity, leading to high reaction activity and high selectivity for cyclohexane. The reaction temperature also influenced the HDO significantly. The mechanism of hydrogenation of phenol was discussed.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3