Morphology-Controlled Synthesis and Electrochemical Characteristics of Fe2O3 Nanorods

Author:

Bai Bo1,Yan Xiaole1,Li Gang1,Li Pengwei1,Hu Jie1,Jiang Huabei2,Zhang Wendong1

Affiliation:

1. Micro-Nano System Research Center of College of Information Engineering and Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China

2. Biomedical Engineering Institute, University of Florida, Gainesville 33063, USA

Abstract

In this work, highly uniform single crystal Fe2O3 nanorods have been synthesized by a facile hydrothermal method in the presence of dihydrogen phosphate ions. Phosphate ions were speculated capping to the sidewalls of Fe2O3 nanocrystals, and resulted in the anisotropic growth of hematite crystals along their [006] zone axis. Fe2O3 nanorods with various aspect ratios have been realized by applying different phosphate concentration of 0.1–0.4[Formula: see text]mM. The electrochemical properties of Fe2O3 nanorods showed that the samples with the smallest aspect ratio possessed superior specific capacitance and stability. It was speculated that the larger specific area of the Fe2O3 nanorods with the shortest axial length facilitated the efficient access of electrolyte ions to the electrode surface, and thus would aid in delivering the high pseudocapacitance. These results provide a promising route to obtain the desired hematite-based energy storage materials.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3