Affiliation:
1. School of Chemistry and Materials Engineering, Huizhou University, Huizhou 516007, P. R. China
2. Department of Inorganic Substances Technology, Water Treatment and General Chemical Engineering, National Technical University of Ukraine, “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv 03056, Ukraine
Abstract
Multi-walled carbon nanotubes (MWCNTs) were synthesized onto a series of individual and bimetallic catalysts by the chemical vapor deposition (CVD) of acetylene at low temperature (600[Formula: see text]C). The catalysts were prepared by two methods, i.e., precipitation and sol–gel, with two different carriers – MgO and Al2O3. The catalysts were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermal gravimetric (TG) analysis, low-temperature adsorption of nitrogen. The yield of the MWCNTs was calculated in two ways, while the highest yield of 800% was achieved onto the two-component NiO/Co2O3/MgO catalyst, SEM and transmission electron microscopy (TEM) results confirm that uniform tube-like structure MWCNTs with the yield of 410% were obtained onto Co2O3/Al2O3 catalyst. These MWCNTs are smooth and pointing in the same direction. Their tube diameter is about 20[Formula: see text]nm, which is the smallest around all observed MWCNTs. Moreover, nonuniform curved bamboo-like MWCNTs with nozzles in the yield of 760% were obtained onto NiO/V2O3/MgO catalyst. Their diameter ranges from 25[Formula: see text]nm to 50[Formula: see text]nm. Results show that single-component catalyst promotes the growth of uniform and smaller nanotubes. Among the as-grown nanotubes, their specific surface area increases and average pores diameter reduces after the treatment with concentrated nitric acid at reflux and washing condition. The largest specific surface area (305[Formula: see text]m2/g) and average pores diameter (26[Formula: see text]m2/g) are processed to MWCNTs grown onto the NiO/Co2O3/MgO catalyst. MWCNTs with such large structural adsorption characteristics and purity of more than 99% obtained with yield 800% show potential use for preparation of nanocomposites as anode materials in lithium ion batteries.
Funder
Science and Technology platform project
Natural Science Foundation of Guangdong Province
Foundation for Distinguished Young Talents in Higher Education of Guangdong
Natural Science Foundation of Huizhou University (CN)
Publisher
World Scientific Pub Co Pte Lt
Subject
Condensed Matter Physics,General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献