SYNTHESIS, STRUCTURE, AND LUMINESCENCE PROPERTIES OF ZnSnO3 NANOWIRES

Author:

AN SOYEON1,JIN CHANGHYUN1,KIM HYUNSU1,LEE SANGMIN2,JEONG BONGYONG3,LEE CHONGMU1

Affiliation:

1. Department of Materials Science and Engineering, Inha University, 253 Yonghyun-dong, Nam-gu, Incheon 402-751, Republic of Korea

2. Department of Electronic Engineering, Inha University, 253 Yonghyun-dong, Nam-gu, Incheon 402-751, Republic of Korea

3. Bio-IT Convergence Center, Korea Institute of Ceramic Engineering and Technology, 103 Fashion Danji-gil Geumcheon-gu, Seoul 153-801, Republic of Korea

Abstract

ZnSnO3 nanowires were synthesized on Si substrates by thermal evaporation of a mixture of ZnO, SnO2 and graphite powders. The nanowires were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and photoluminescence spectroscopy. The ZnSnO3 nanowires varied from 10 to 100 nm in diameter and up to a few hundred of micrometers in length. Transmission electron microscopy and X-ray diffraction revealed that the nanowires are multiphase nanostructures containing ZnSnO3, Zn2SnO4, ZnO, and SnO2 phases. Photoluminescence measurements showed that ZnSnO3 nanowires had a sharp ultraviolet emission peak at approximately 375 nm as well as a broad green emission band centered at approximately 510 nm. The violet emission of ZnSnO3 nanowires exhibits a blue shift by approximately 5 nm compared to that of ZnO nanowires and the visible emission of ZnO nanowires shifted from the orange region to the green region, which should be attributed to the narrowing of Eg. Thermal annealing enhanced the green emission but degraded the ultraviolet emission of the ZnSnO3 nanowires. In addition, the origin of the enhanced luminescence of ZnSnO3 nanowires compared to ZnO and SnO2 nanowires is discussed.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3