Multistep Controllability Synthesis and Growth Mechanism of ZnO Nanopagoda for Schottky Diode Device

Author:

Liu Yang1,Liu Guishan1,Wang Yongbing1,Gao Wenyuan1,Hao Hongshun1,Huang Bopu1

Affiliation:

1. Department of Inorganic Non-Metal Materials Engineering, Dalian Polytechnic University, Dalian 116034, P. R. China

Abstract

Ordered ZnO arrays with a peculiar nanostructure were synthesized by a multistep synthesis process. The first step was the preparation of ZnO seed to induce the formation of ZnO array via potentiostatic electrodeposition method using a typical three electrode set-up. The second step was fabricating ZnO array along seed by Chemical Bath Deposition. Structural analysis of ZnO was carried out with X-ray diffraction (XRD), which showed a hexagonal wurtzite structure, and the selected area electron diffraction (SAED) patterns indicated that nanocrystalline is a part of monocrystal. The scanning electron microscope (SEM) and transmission electron microscope (TEM) were used to study the microstructure, and showed a pagoda-like microstructure with a tiny top and large bottom, which had an average top diameter of exceeding 800[Formula: see text]nm at seed-depositing time of 60[Formula: see text]s, and then growth mechanisms are subsequently given a further explanation, viewed from kinetics and thermodynamics. In addition, the current–voltage curves of schottky diode devices with ZnO nanopagoda arrays revealed that ZnO films arrays along grown ZnO seed had a higher reverse saturation current than ZnO films grown without seed, which are [Formula: see text] A and [Formula: see text] A, respectively. The minimum turn-on voltage of the diode with ZnO seed deposited 60[Formula: see text]s is 0.18[Formula: see text]V, without seed is 0.52[Formula: see text]V.

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3