Adjustment of Hydrophilic-Lipophilic Balance of Hexamethyldisilazane-Modified Nanosilica for Enhanced Oil Recovery

Author:

Tao Xiaohe1,Guo Sai12,Liu Peisong12,Li Xiaohong132,Zhang Zhijun132

Affiliation:

1. Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, P. R. China

2. Engineering Research Center for Nanomaterials Co. Ltd., Henan University, Jiyuan 459000, P. R. China

3. National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, HenanUniversity, Kaifeng 475004, P. R. China

Abstract

Different dosages of hexamethyldisilazane (denoted as HMDS), a silane coupling agent, were adopted to modify nanosilica (denoted as NS) to afford a series of HMDS-NS nanoparticles with different hydrophilic-lipophilic balance governed by the amount of surface hydroxyl. The amounts of the hydrophilic hydroxyl of the as-prepared HMDS-NS nanoparticles and their water contact angles were measured, and their dispersing behavior in water and oil was examined in relation to their transfer behavior therein. Moreover, the effects of the as-prepared HMDS-NS nanofluids on the oil–water interfacial tension as well as the oil recovery were investigated based on interfacial tension measurements and simulated rock core flooding tests. Findings indicate that the hydrophilic-lipophilic balance of HMDS-NS nanoparticles highly depends on the amount of the surface hydroxyl, and the surface hydroxyl amount can be well adjusted by properly selecting the dosage of HMDS modifier. Besides, the transfer behavior of HMDS-NS nanoparticles in oil and water is closely related to their hydrophilic-lipophilic balance, and they can greatly reduce the oil–water interfacial tension and increase the oil recovery by 7.7–11.1% as compared with conventional water flooding. This is because the surface grafting of the hydrophobic segments of HMDS leads to a significant increase in the hydrophobicity of nanosilica, thereby changing the wettability of oil on the sand surface and favoring the stripping of oil droplets. Particularly, the HMDS-NS nanofluid obtained with 2[Formula: see text]wt.% of HMDS modifier has a water contact angle of 83.6 and can dramatically reduce the oil–water interfacial tension from 20.22[Formula: see text]mN/m to 0.28[Formula: see text]mN/m, showing desired hydrophilic-lipophilic balance and potential for enhanced oil recovery associated with chemical flooding.

Funder

Natural Science Foundation of Jilin Province

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3