Environmentally Friendly Magnetic Nanoparticles for Efficient Removal of Methylene Blue and Cr(VI) from Water

Author:

Wang Rui1,Chen Kanglong1,Peng Si1,Wang Qiu-Yue1,Huang Shuang-Hui1,Zhou Qing-Han1ORCID,Wang Jiandong2,Lin Juan2

Affiliation:

1. Key Laboratory of Basic Chemistry of the State Ethnic Commission, School of Chemistry and Environment, Southwest Minzu University, First Ring Road, 4th Section No. 16, Chengdu, Sichuan 610041, P. R. China

2. School of Biomedical Sciences and Technology, Chengdu Medical College, Xindu Road No. 783, Chengdu, Sichuan 610500, P. R. China

Abstract

The poor environmental friendliness, low adsorption capacity and nonreusability of adsorbents are still challenging for the removal of pollutants in aqueous solution. Herein, novel polypeptide-functionalized silica-coated magnetic nanoparticles (PS-MNPs), Fe3O4@SiO2@PLL nanoparticles, with good environmental friendliness, excellent adsorption capability and economic reusability were designed and prepared for efficient removal of methylene blue (MB) and Cr(VI) ion (Cr2O[Formula: see text]. The chem-physical properties of Fe3O4@SiO2@PLL nanoparticles, such as chemical structure, nanosize, nanomorphology, crystalline structure, magnetization and thermo-oxidative degradation behavior were fully investigated in this study. In addition, the adsorption properties of the Fe3O4@SiO2@PLL nanoparticles for MB and Cr(VI) ion in aqueous solution were explored by batch adsorption experiments. Based on the experimental results, the Fe3O4@SiO2@PLL nanoparticles demonstrated excellent adsorption capacity for removal of both MB and Cr(VI) ion that the theoretical maximum adsorption capacities of the nanoparticles were 301.2[Formula: see text]mg [Formula: see text] g[Formula: see text] for MB and 164.7[Formula: see text]mg [Formula: see text] g[Formula: see text] for Cr(VI), respectively. The adsorption process could be better fitted by pseudo-second-order model, and matched well with the Langmuir isotherm equation. Moreover, the Fe3O4@SiO2@PLL nanoparticles could be easily regenerated by desorbing metal ions and organic dyes from the adsorbents with appropriate eluents, and showed good adsorption capacity after five recycles. In brief, the as-prepared PS-MNPs exhibited improved environmental friendliness, excellent adsorption properties and high regeneration efficiency, which could be used as a potential adsorbent for different kinds of contaminants removal.

Funder

BioXFEL Science and Technology Center

Functional Polymer Materials and Fine Chemicals Center, Foshan Center of Chinese Academy of Sciences

Publisher

World Scientific Pub Co Pte Lt

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3