Affiliation:
1. Department of Mathematics, Southeast University, Nanjing, Jiangsu 210096, China
Abstract
Let H be a weak Hopf algebra. In this paper, it is proved that the monoidal category [Formula: see text] of weak Hopf bimodules studied in Wang [19] is equivalent to the monoidal category [Formula: see text] of weak Yetter–Drinfel'd modules introduced in Böhm [2]. When H has a bijective antipode, a braiding in the category [Formula: see text] is constructed by the braiding on [Formula: see text], generalizing the main result in Schauenburg [14]. Finally, the braided Lie structures of an algebra A in the category [Formula: see text] are investigated, by showing that if A is a sum of two braided commutative subalgebras, then the braided commutator ideal of A is nilpotent.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Algebra and Number Theory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献