Categories and Weak Equivalences of Graded Algebras

Author:

Gordienko Alexey1,Schnabel Ofir2

Affiliation:

1. Department of Higher Mathematics, Moscow State Technical University of Civil Aviation, Kronshtadtsky Boulevard, d. 20, 125993 Moscow, Russia

2. Department of Mathematics, ORT Braude College, 2161002 Karmiel, Israel

Abstract

In the study of the structure of graded algebras (such as graded ideals, graded subspaces, and radicals) or graded polynomial identities, the grading group can be replaced by any other group that realizes the same grading. Here we come to the notion of weak equivalence of gradings: two gradings are weakly equivalent if there exists an isomorphism between the graded algebras that maps each graded component onto a graded component. Each group grading on an algebra can be weakly equivalent to G-gradings for many different groups G; however, it turns out that there is one distinguished group among them, called the universal group of the grading. In this paper we study categories and functors related to the notion of weak equivalence of gradings. In particular, we introduce an oplax 2-functor that assigns to each grading its support, and show that the universal grading group functor has neither left nor right adjoint.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3