Affiliation:
1. Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China
2. Department of Mathematics, Qufu Normal University, Qufu, Shandong 273165, China
Abstract
Let [Formula: see text] be the Lie algebra with basis {Li,j, C|i, j ∈ ℤ} and relations [Li,j, Lk,l] = ((j + 1)k - i(l + 1))Li+k, j+l + iδi, -kδj+l, -2C and [C, Li,j] = 0. It is proved that an irreducible highest weight [Formula: see text]-module is quasifinite if and only if it is a proper quotient of a Verma module. An additive subgroup Γ of 𝔽 corresponds to a Lie algebra [Formula: see text] of Block type. Given a total order ≻ on Γ and a weight Λ, a Verma [Formula: see text]-module M(Λ, ≻) is defined. The irreducibility of M(Λ, ≻) is completely determined.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Algebra and Number Theory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献