Affiliation:
1. Department of Pure Mathematics, Faculty of Mathematical Sciences, Tarbiat Modares University, P.O. Box 14115-134 Tehran, Iran
Abstract
Let R be a ring and α an automorphism of R. Amitsur proved that the Jacobson radical J(R[x]) of the polynomial ring R[x] is the polynomial ring over the nil ideal J(R[x]) ∩ R. Following Amitsur, it is shown that when R is an Armendariz ring of skew inverse Laurent series type and S is any one of the ring extensions R[x;α], R[x,x-1;α], R[[x-1;α]] and R((x-1;α)), then ℜ𝔞𝔡(S) = ℜ𝔞𝔡(R)S = Nil (S), ℜ𝔞𝔡(S) ∩ R = Nil (R), where ℜ𝔞𝔡 is a radical in a class of radicals which includes the Wedderburn, lower nil, Levitzky and upper nil radicals.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Algebra and Number Theory