Affiliation:
1. CNRS, Institut de Mathématiques de Jussieu, 6 Av Bizet, 94340 Joinville-le-Pont, France
Abstract
The weights for a finite group G with respect to a prime number p were introduced by Jon Alperin, in order to formulate his celebrated conjecture. In 1992, Everett Dade formulated a refinement of Alperin's conjecture involving ordinary irreducible characters — with their defect — and, in 2000, Geoffrey Robinson proved that the new conjecture holds for p-solvable groups. But this refinement is formulated in terms of a vanishing alternating sum, without giving any possible refinement for the weights. In this note we show that, in the case of the p-solvable finite groups, the method developed in a previous paper can be suitably refined to provide, up to the choice of a polarization ω, a natural bijection — namely compatible with the action of the group of outer automorphisms of G — between the sets of absolutely irreducible characters of G and of G-conjugacy classes of suitable inductive weights, preserving blocks and defects.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Algebra and Number Theory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献