Affiliation:
1. Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt
Abstract
A Riemann surface [Formula: see text] having field of moduli ℝ, but not a field of definition, is called pseudo-real. This means that [Formula: see text] has anticonformal automorphisms, but none of them is an involution. A Riemann surface is said to be plane if it can be described by a smooth plane model of some degree d ≥ 4 in [Formula: see text]. We characterize pseudo-real-plane Riemann surfaces [Formula: see text], whose conformal automorphism group Aut+([Formula: see text]) is PGL3(ℂ)-conjugate to a finite non-trivial group that leaves invariant infinitely many points of [Formula: see text]. In particular, we show that such pseudo-real-plane Riemann surfaces exist only if Aut+([Formula: see text]) is cyclic of even order n dividing the degree d. Explicit families of pseudo-real-plane Riemann surfaces are given for any degree d = 2pm with m > 1 odd, p prime and n = d/p.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Algebra and Number Theory