Phases of Stable Representations of Euclidean and Wild Quivers

Author:

Engenhorst Magnus1

Affiliation:

1. Deutsche Postbank AG, Bundeskanzlerplatz 6, Bonn 53113, Germany

Abstract

We consider stable representations of non-Dynkin quivers with respect to a central charge. These attract a lot of interest in mathematics and physics since they can be identified with so-called BPS states. Another motivation is the work of Dimitrov et al. on the phases of stable representations of the generalized Kronecker quiver. One aim is to explain for general Euclidean and wild quivers the behavior of phases of stable representations well known in some examples. In addition, we study especially the behavior of preinjective, postprojective and regular indecomposable modules. We show that the existence of a stable representation with self-extensions implies the existence of infinitely many stables without self-extensions for rigid central charges. In this case the phases of the stable representations approach one or two limit points. In particular, the phases are not dense in two arcs. The category of representations of acyclic quivers is a special case of rigid Abelian categories which show this behavior for rigid central charges.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3