Bekenstein–Hawking entropy for discrete dynamical systems on sites

Author:

Najmizadeh Sh.1,Toomanian M.1,Molaei M. R.2ORCID,Nasirzade T.2

Affiliation:

1. Department of Mathematics, Karaj Branch, Islamic Azad University, I. R. Iran

2. Mahani Mathematical Research Center and Department of Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran

Abstract

In this paper, we extend the notion of Bekenstein–Hawking entropy for a cover of a site. We deduce a new class of discrete dynamical system on a site and we introduce the Bekenstein–Hawking entropy for each member of it. We present an upper bound for the Bekenstein–Hawking entropy of the iterations of a dynamical system. We define a conjugate relation on the set of dynamical systems on a site and we prove that the Bekenstein–Hawking entropy preserves under this relation. We also prove that the twistor correspondence preserves the Bekenstein–Hawking entropy.

Funder

Shahid Bahonar University of Kerman

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,Astronomy and Astrophysics,Nuclear and High Energy Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3