Nonlocal quark scalar condensate from the Dyson–Schwinger equation and the gluon vacuum polarization based on the OPE approach

Author:

Huang Jing-Hui1,Duan Xue-Ying2,Huan Chen3,Wang Guang-Jun2,Hu Xiang-Yun1ORCID

Affiliation:

1. Institute of Geophysics and Geomatics, China University of Geosciences, Lumo Road 388, 430074 Wuhan, China

2. School of Automation, China University of Geosciences, Lumo Road 388, 430074 Wuhan, China

3. School of Mathematics and Physics, China University of Geosciences, Lumo Road 388, 430074 Wuhan, China

Abstract

Operator-product expansion (OPE) can be employed to obtain the lowest-order, nonlocal quark scalar condensate component of gluon vacuum polarization. In particular, the nonlocal quark scalar condensate can be calculated by solving the Dyson–Schwinger equation (DSE) of QCD. Then, field-theoretical aspects of the gluon vacuum polarization and nonperturbative gluon propagator are considered in the Landau gauge. The gluon propagator we obtained is finite in the infrared domain, where the single gluon mass [Formula: see text] can be determined. Our results for the [Formula: see text] ratio range of that from 1.32 to 1.36, which agrees with previous determinations for this ratio. Then, the analytic structure of the gluon propagators from the OPE results is explored. The analysis of the gluon Schwinger function finds clear evidence of the positivity violations in the gluon propagator. In addition, the results of replacing the OPE simplified quark loop with the full quark one-loop are calculated in vacuum to investigate how good the OPE approximation approach is. The results demonstrate that the OPE approach provides a good approximate method to calculate the full light [Formula: see text] quark loop in vacuum. In particular, the OPE approach can well approximate the approach with full quark one-loop in a specific model. Finally, a new method for obtaining the chemical potential dependence of the gluon vacuum polarization and the dressed gluon propagators is developed.

Funder

National Natural Science Foundation of China

MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources

National Key Research and Development Program of China

Fundamental Research Funds for Central Universities

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Physics and Astronomy,Astronomy and Astrophysics,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3