Affiliation:
1. Department of Physics, University of Wisconsin, Madison, WI 53706, USA
2. Institute for Theoretical Physics Amsterdam, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
Abstract
Scalar fields on the bulk side of AdS/CFT correspondence can be assigned unconventional boundary conditions related to the conventional one by Legendre transform. One can further perform double trace deformations which relate the two boundary conditions via renormalization group flow. Thinking of these operators as S and T transformations, respectively, we explore the SL(2, R) family of models which naively emerges from repeatedly applying these operations. Depending on the parameters, the effective masses vary and can render the theory unstable. However, unlike in the SL(2, Z) structure previously seen in the context of vector fields in AdS4, some of the features arising from this exercise, such as the vacuum susceptibility, turns out to be scheme dependent. We explain how scheme independent physical content can be extracted in spite of some degree of scheme dependence in certain quantities.
Funder
U.S. Department of Energy
Publisher
World Scientific Pub Co Pte Lt
Subject
General Physics and Astronomy,Astronomy and Astrophysics,Nuclear and High Energy Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献