DARK MATTER AND COSMOLOGICAL QCD PHASE TRANSITION

Author:

HWANG W-Y. P.1

Affiliation:

1. The Research Center for Cosmology and Particle Astrophysics, Center for Theoretical Sciences, Institute of Astrophysics and Department of Physics, National Taiwan University, Taipei 106, Taiwan

Abstract

In this talk, we take the wisdom that the cosmological QCD phase transition, which happened at a time between 10−5 sec and 10−4 sec or at the temperature of about 150 MeV and accounts for confinement of quarks and gluons to within hadrons, would be of first order, i.e., would release latent "heat" or latent energy. I wish to base on two important points, i.e. (1) that we have 25% dark matter in the present Universe, and (2) that when the early universe underwent the cosmological QCD phase transition it released 1.02 × 10gm/cm3 in latent energy huge compared to 5.88 × 109 gm/cm3 radiation (photon) energy, to deduce that the two numbers are in fact closely related. It is sufficient to approximate the true QCD vacuum as one of degenerate θ-vacua and can be modelled effectively via a complex scalar field with spontaneous symmetry breaking. We examine how "pasted" or "patched" domain walls are formed, how such walls evolve in the long run, and we believe that the majority of dark matter could be accounted for in terms of such domain-wall structure and its remnants. The latent energy released due to the conversion of the false vacua to the true vacua, in the form of "pasted" or "patched" domain walls at first and their evolved objects, make it obsolete the "radiation-dominated" epoch or later on the "matter-dominated" epoch.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,Astronomy and Astrophysics,Nuclear and High Energy Physics

Reference2 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3