Affiliation:
1. Department of Mathematics, University of Rajasthan, Jaipur 302004, India
Abstract
Analytical solutions for radiation-dominated phase of Quasi-Steady-State Cosmology (QSSC) in Friedmann–Robertson–Walker models are obtained. We find that matter density is positive in all the cases [Formula: see text]. The nature of Hubble parameter (H) in [Formula: see text] is discussed. The deceleration parameter [Formula: see text] is marginally less than zero indicating accelerating universe. The scale factor [Formula: see text] is graphically shown with time. The model represents oscillating universe between the above-mentioned limits. Because of the bounce in QSSC, the maximum density phase is still matter-dominated. The models represent singularity-free model. We also find that the models have event horizon i.e. no observer beyond the proper distance [Formula: see text] can communicate each other in FRW models for radiation-dominated phase in the frame work of QSSC. The FRW models are special classes of Bianchi type I, V, IX spacetimes with zero, negative and positive curvatures, respectively. Initially i.e. at [Formula: see text], the models represent steady model. We have tried to show how a good fit can be obtained to the observations in the framework of QSSC during radiation-dominated phase. The present model is free from singularity, particle horizon and provides a natural explanation for the flatness problem. Therefore, our model is superior to other models.
Publisher
World Scientific Pub Co Pte Lt
Subject
General Physics and Astronomy,Astronomy and Astrophysics,Nuclear and High Energy Physics