Dark energy black holes with intermediate masses at high redshifts: An earlier generation of quasars and observations

Author:

Singh Anupam1

Affiliation:

1. Department of Physics, L.N. Mittal I.I.T, Jaipur, India

Abstract

Dark energy is the largest fraction of the energy density of our universe — yet it remains one of the enduring enigmas of our times. Here we show that dark energy can be used to solve 2 tantalizing mysteries of the observable universe. We build on existing models of dark energy linked to neutrino masses. In these models, dark energy can undergo phase transitions and form black holes. Here we look at the implications of the family structure of neutrinos for the phase transitions in dark energy and associated peaks in black hole formation. It has been previously shown that one of these peaks in black hole formation is associated with the observed peak in quasar formation at redshifts [Formula: see text]. Here, we predict that there will also be an earlier peak in the dark energy black holes at high redshifts [Formula: see text]. These dark energy black holes formed at high redshifts are Intermediate Mass Black Holes (IMBHs). These dark energy black holes at large redshift can help explain both the EDGES observations and the observations of large Supermassive Black Holes (SMBHs) at redshifts of 7 or larger. This work directs us to actively look for these dark energy black holes at these high redshifts as predicted here through targeted searches for these black holes at the redshifts [Formula: see text] near 18. There is a slight dependence of the location of the peak on the lightest neutrino mass. This may enable a measurement of the lightest neutrino mass — something which has eluded us so far. Finding these dark energy black holes of Intermediate Mass should be within the reach of upcoming observations — particularly with the James Webb Space Telescope — but perhaps also through the use of other innovative techniques focusing specifically on the redshifts [Formula: see text] around 18.

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Physics and Astronomy,Astronomy and Astrophysics,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3