Dark energy stars in the context of black holes — The physical profiles

Author:

Azman Muhamad Ashraf12ORCID,Yusof Norhasliza1ORCID,Kassim Hasan Abu1ORCID,Marcos Juan Carlos Algaba1ORCID

Affiliation:

1. Department of Physics, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia

2. Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia

Abstract

The dark energy star is a hypothetical model proposed as an alternative to address problems related to the structure of black holes (BHs), such as the presence of singularities. While dark energy star models have been previously explored, their application to BHs remains unexplored. This paper aims to investigate the concept of dark energy stars and compare their properties to BHs. The primary objective is to explore the physical profiles of dark energy stars and evaluate their similarity to the physical properties of BHs described by the Schwarzschild solution. To achieve this, specific properties of the dark energy star models need to be satisfied in the context of BHs, and their physical profiles are studied. The metric function [Formula: see text] proposed by M. R. Finch and J. E. F. Skea [Class. Quantum Grav. 6, 467 (1989)], as adopted by A. Banerjee, M. K. Jasim and A. Pradhan [Mod. Phys. Lett. A 35, 2050071 (2020), arXiv:1911.09546 [gr-qc]], is used and parametrized, making it close to BH spacetimes. The findings show that the model exhibits properties similar to BHs in terms of the stellar radius, compactness, surface redshift, and nature of gravity. Specifically, the dark energy star model behaves like BHs with a dark energy parameter [Formula: see text], satisfying all energy conditions. However, it should be noted that the investigation is limited to static spherically symmetric cases and further studies are required to explore the model in rotating cases. Overall, this study sheds light on the potential of dark energy star models in explaining BH properties and presents promising avenues for further research in understanding the nature of BHs and dark energy.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3