The Superstring Propagator and the Signature of Space-Time

Author:

Pollock M. D.12

Affiliation:

1. L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, Ulitsa Kosygina 2, Moscow 117940, Russia

2. V. A. Steklov Mathematical Institute, Russian Academy of Sciences, Vavilova 42, Moscow 117966, Russia

Abstract

The Faddeev (Newton–Wigner) propagator K for the heterotic superstring theory is derived from the Wheeler–DeWitt equation for the wave function of the Universe Ψ, obtained in the four-dimensional (mini-superspace) Friedmann space-time ds2=dt2-a2(t)dx2, after reduction from the ten-action. The effect of higher-derivative terms ℛ2 is to break the local invariance under time reparametrization to a global symmetry t→λt, and consequently there are no ghost or gauge-fixing contributions, a functional integral over the (constant) Lagrange multiplier λ being sufficient to enforce the Hamiltonian constraint implicitly. After Wick rotation of the time, [Formula: see text], the only physically acceptable solution for K decreases exponentially on the Planck time-scale ~ t P , explaining from the quantum cosmological viewpoint why the signature of space-time is Lorentzian rather than Euclidean. This is analogous to the case of the (two-dimensional) free relativistic scalar particle, discussed recently by Redmount and Suen, who found that the propagator decreases exponentially outside the light-cone on the scale of the Compton wavelength of the particle (in accordance with the Heisenberg indeterminacy principle). These two seemingly different forms of acausality are thus physically excluded in the same way. The propagator for the Schwarzschild black hole of mass M is also obtained from the Schrödinger equation for the wave function on the apparent horizon, due to Tomimatsu, and the Hawking temperature T H =(8π M)-1 is derived from the Euclidean form of this equation.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,Astronomy and Astrophysics,Nuclear and High Energy Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the thermodynamics of the cosmological apparent horizon;The European Physical Journal Plus;2015-11

2. On the Entropy of Schwarzschild Space-Time;Foundations of Physics;2013-02-15

3. ON THE THERMODYNAMICS OF COSMIC DUST;Acta Physica Polonica B;2011

4. GRAVITATIONAL THERMODYNAMICS AND THE WHEELER–DEWITT EQUATION;International Journal of Modern Physics D;2011-01

5. ON THE SUPERSTRING HAMILTONIAN IN THE FRIEDMANN SPACE–TIME;International Journal of Modern Physics D;2006-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3