Connections between Weyl geometry, quantum potential and quantum entanglement

Author:

Liang Shi-Dong12ORCID,Huang Wenjing1

Affiliation:

1. School of Physics, Sun Yat-Sen University, Guangzhou 510275, P. R. China

2. State Key Laboratory of Optoelectronic Material and Technology, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-Sen University, Guangzhou 510275, P. R. China

Abstract

The Weyl geometry promises potential applications in gravity and quantum mechanics. We study the relationships between the Weyl geometry, quantum entropy and quantum entanglement based on the Weyl geometry endowing the Euclidean metric. We give the formulation of the Weyl Ricci curvature and Weyl scalar curvature in the n-dimensional system. The Weyl scalar field plays a bridge role to connect the Weyl scalar curvature, quantum potential and quantum entanglement. We also give the Einstein–Weyl tensor and the generalized field equation in 3D vacuum case, which reveals the relationship between Weyl geometry and quantum potential. Particularly, we find that the correspondence between the Weyl scalar curvature and quantum potential is dimension-dependent and works only for the 3D space, which reveals a clue to quantize gravity and an understanding why our space must be 3D if quantum gravity is compatible with quantum mechanics. We analyze numerically a typical example of two orthogonal oscillators to reveal the relationships between the Weyl scalar curvature, quantum potential and quantum entanglement based on this formulation. We find that the Weyl scalar curvature shows a negative dip peak for separate state but becomes a positive peak for the entangled state near original point region, which can be regarded as a geometric signal to detect quantum entanglement.

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Physics and Astronomy,Astronomy and Astrophysics,Nuclear and High Energy Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Finslerian Geometrodynamics;International Journal of Theoretical Physics;2024-06-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3