Affiliation:
1. College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China
2. School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, P. R. China
Abstract
We study the absorption and scattering of massless scalar waves propagating in spherically symmetric spacetimes with dynamical cosmological constant both in low-energy and high-energy zones. In the former low-energy regime, we solve analytically the Regge–Wheeler wave equation and obtain an analytic absorption probability expression which varies with [Formula: see text], where M is the central mass and Λ is cosmological constant. The low-energy absorption probability, which is in the range of [0, 0.986701], increases monotonically with increase in Λ. In the latter high-energy regime, the scalar particles adopt their geometric optics limit value. The trajectory equation with effective potential emerges and the analytic high-energy greybody factor, which is relevant with the area of classically accessible regime, also increases monotonically with increase in Λ, as long Λ is less than or of the order of 104. In this high-energy case, the null cosmological constant result reduces to the Schwarzschild value [Formula: see text].
Publisher
World Scientific Pub Co Pte Lt
Subject
General Physics and Astronomy,Astronomy and Astrophysics,Nuclear and High Energy Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献