Role of deficit solid angle and quintessence-like matter in strong field gravitational lensing

Author:

Geng Jin-Ling1,Zhang Yu1,Li En-Kun1,Duan Peng-Fei2

Affiliation:

1. Faculty of Science, Kunming University of Science and Technology, Kunming, Yunnan 650500, P. R. China

2. City College, Kunming University of Science and Technology, Kunming, Yunnan 650500, P. R. China

Abstract

Using the strong field limit approach, the strong field gravitational lensing in a black hole with deficit solid angle (DSA) and surrounded by quintessence-like matter (QM) has been investigated. The results show that the DSA [Formula: see text], the energy density of QM [Formula: see text] and the equation of state (EOS) parameter [Formula: see text] have some distinct effects on the strong field gravitational lensing. As [Formula: see text] or [Formula: see text] increases, the deflection angle and the strong field limit coefficients all increase faster and faster. Moreover, the evolution of the main observables also has been studied, which shows that the curves at [Formula: see text] are more steepy than those of [Formula: see text]. Compared with the Schwarzschild black hole, the black hole surrounded by QM has smaller relative magnitudes, and at [Formula: see text] both the angular position and angular separation are slightly bigger than those of Schwarzschild black hole, but when [Formula: see text], the angular position and the relative magnitudes all diminish significantly. Therefore, by studying the strong gravitational lensing, we can distinguish the black hole with a DSA and surrounded by QM from the Schwarzschild black hole and the effects of the DSA and QM on the strong gravitational lensing by black holes can be known better.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,Astronomy and Astrophysics,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3