Affiliation:
1. Departamento de Física, Universidad de Buenos Aires FCEN-UBA and IFIBA-CONICET, Ciudad Universitaria, Pabellón 1, 1428, Buenos Aires, Argentina
Abstract
Alday and Tachikawa [Lett. Math. Phys.94, 87 (2010)] observed that the Nekrasov partition function of [Formula: see text] superconformal gauge theories in the presence of fundamental surface operators can be associated to conformal blocks of a 2D CFT with affine sl(2) symmetry. This can be interpreted as the insertion of a fundamental surface operator changing the conformal symmetry from the Virasoro symmetry discovered in Ref. 2 to the affine Kac–Moody symmetry. A natural question arises as to how such a 2D CFT description can be extended to the case of non-fundamental surface operators. Motivated by this question, we review the results [Y. Hikida and V. Schomerus, JHEP0710, 064 (2007); S. Ribault, JHEP0805, 073 (2008)] and put them together to suggest a way to address the problem: It follows from this analysis that the expectation value of a non-fundamental surface operator in the SU(2) [Formula: see text] super Yang–Mills (YM) theory would be in correspondence with the expectation value of a single vertex operator in a two-dimensional CFT with reduced affine symmetry and whose central charge is parametrized by the integer number that labels the type of singularity of the surface operator.
Publisher
World Scientific Pub Co Pte Lt
Subject
General Physics and Astronomy,Astronomy and Astrophysics,Nuclear and High Energy Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A slow review of the AGT correspondence;Journal of Physics A: Mathematical and Theoretical;2022-08-12
2. Conformal field theories from deformations of theories withWnsymmetry;Physical Review D;2016-10-06
3. Surface defects and resolvents;Journal of High Energy Physics;2013-09