WORLDLINE VARIATIONAL APPROXIMATION: A NEW APPROACH TO THE RELATIVISTIC BINDING PROBLEM

Author:

BARRO-BERGFLÖDT K.1,ROSENFELDER R.2,STINGL M.3

Affiliation:

1. Department of Mathematics, ETH Zürich, CH-8092 Zürich, Switzerland

2. Particle Theory Group, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland

3. Institut f. Theoretische Physik, Universität Münster, D-48149 Münster, Germany

Abstract

We determine the lowest bound-state pole of the density–density correlator in the scalar Wick–Cutkosky model where two equal-mass constituents interact via the exchange of mesons. This is done by employing the worldline representation of field theory together with a variational approximation as in Feynman's treatment of the polaron. Unlike traditional methods based on the Bethe–Salpeter equation, self-energy and vertex corrections are (approximately) included as are crossed diagrams. Only vacuum-polarization effects of the heavy particles are neglected. The well-known instability of the model due to self-energy effects leads to large qualitative and quantitative changes compared to traditional approaches which neglect them. We determine numerically the critical coupling constant above which no real solutions of the variational equations exist anymore and show that it is smaller than in the one-body case due to an induced instability. The width of the bound state above the critical coupling is estimated analytically.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,Astronomy and Astrophysics,Nuclear and High Energy Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3