Decoherence in two-dimensional quantum walks with two- and four-state coins

Author:

Yang Yu-Guang12,Wang Xi-Xi1,Li Jian3,Li Dan4,Zhou Yi-Hua1,Shi Wei-Min1

Affiliation:

1. Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China

2. Beijing Key Laboratory of Trusted Computing, Beijing 100124, China

3. School of Computer, Beijing University of Posts and Telecommunications, Beijing 100876, China

4. College of Computer Science and Technology, Nanjing University of Aeronautic and Astronautics (NUAA), Nanjing 211106, China

Abstract

Two-dimensional quantum walks using a two-state coin have simpler experimental implementation than two-dimensional quantum walks using a four-state coin. However, decoherence occurs inevitably during the evolution of quantum walks due to the coupling between the quantum systems and their environment. Thus, it is interesting to investigate the robustness against decoherence for two- and four-state two-dimensional quantum walks. Here, we investigate the effects of the decoherence on two- and four-state two-dimensional quantum walks produced by the broken-link-type noise and compare their robustness against the broken-link-type noise. Specifically, we analyze the quantum correlation between the two spatial dimensions x and y by using measurement-induced disturbance for the two-state quantum walks, i.e. the alternate walk and the Pauli walk, and the four-state quantum walks, i.e. the Grover, Hadamard and Fourier walks, respectively. Our analysis shows that the two-state walks are more robust against the broken-link-type noise than the four-state walks.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Physics and Astronomy,Astronomy and Astrophysics,Nuclear and High Energy Physics

Reference60 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3