Numerical investigations of the fractional order derivative-based accelerating universe in the modified gravity

Author:

Alderremy A. A.1ORCID,Gómez-Aguilar J. F.2ORCID,Sabir Zulqurnain3ORCID,Raja Muhammad Asif Zahoor4ORCID,Aly Shaban5ORCID

Affiliation:

1. Department of Mathematics, Faculty of Science, King Khalid University, Abha 61413, Kingdom of Saudi Arabia

2. Centro de Investigación en Ingeniería y Ciencias Aplicadas (CIICAp-IICBA)/UAEM, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001 Col. Chamilpa, C.P. 62209 Cuernavaca, Morelos, Mexico

3. Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon

4. Future Technology Research Center, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan, R.O.C

5. Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut, Egypt

Abstract

In this work, a Liouville–Caputo fractional order (FO) derivative for the mathematical system based on the accelerating universe in the modified gravity (AUMG), i.e. FO-AUMG is proposed to get more accurate solutions. The nonlinear dynamics of the FO-AUMG is classified into five dynamics. The performances of the designed nonlinear FO-AUMG are numerically stimulated with the stochastic procedures of Levenberg–Marquardt backpropagated (LMB) scheme-based neural networks. The statics for FO-AUMS is used for the nonlinear FO-AUMG as 72%, 16% and 12% for training, authorization, and testing. Twenty neurons in hidden layers have been used to approximate the solution of the nonlinear FO-AUMS. The comparison of three different cases of the nonlinear FO-AUMS is performed with dataset generated by Adams method. To validate the uniformity, legitimacy, precision, and competence of LMB-based adaptive neural networks, the outcomes of the state transitions parameters, regression, correlation, error-histogram plots have been exploited.

Funder

the Deanship of Scientific Research at King Khalid University

Publisher

World Scientific Pub Co Pte Ltd

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3