Dark energy as a large scale quantum gravitational phenomenon

Author:

Singh Tejinder P.1ORCID

Affiliation:

1. Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India

Abstract

In our recently proposed quantum theory of gravity, the universe is made of ‘atoms‘” of space-time-matter (STM). Planck scale foam is composed of STM atoms with Planck length as their associated Compton wave-length. The quantum dispersion and accompanying spontaneous localization of these STM atoms amounts to a cancellation of the enormous curvature on the Planck length scale. However, an effective dark energy term arises in Einstein equations, of the order required by current observations on cosmological scales. This happens if we propose an extremely light particle having a mass of about [Formula: see text], forty-two orders of magnitude lighter than the proton. The holographic principle suggests there are about [Formula: see text] such particles in the observed universe. Their net effect on space-time geometry is equivalent to dark energy, this being a low energy quantum gravitational phenomenon. In this sense, the observed dark energy constitutes evidence for quantum gravity. We then invoke Dirac’s large number hypothesis to also propose a dark matter candidate having a mass halfway (on the logarithmic scale) between the proton and the dark energy particle, i.e. about [Formula: see text].

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,Astronomy and Astrophysics,Nuclear and High Energy Physics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Strengthening interacting agegraphic dark energy DGP constraints with local measurements and multimessenger forecastings;International Journal of Modern Physics D;2024-06

2. A unified cosmological dark sector from a Bose–Einstein condensate;Physics of the Dark Universe;2023-12

3. Gravitation, and quantum theory, as emergent phenomena;Journal of Physics: Conference Series;2023-06-01

4. A mechanism for dark matter and dark energy in the theory of causal fermion systems;Classical and Quantum Gravity;2023-03-15

5. On the cosmological constant as a quantum operator;International Journal of Geometric Methods in Modern Physics;2022-11-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3