Thermodynamic phase transition of quantum-corrected Schwarzschild black hole based on nonsingular temperature

Author:

Shahjalal Md.1

Affiliation:

1. Department of Mathematics, Shahjalal University of Science and Technology, Sylhet-3114, Bangladesh

Abstract

Due to thermal radiation process, the temperature of the Schwarzschild black hole diverges at the time the black hole evaporates, while it is natural to expect a vanishing temperature, since the spacetime geometry becomes Minkowskian whose intrinsic temperature is identically zero. Recently, a nonsingular temperature has been proposed in this research line, which follows the Hawking temperature for the large black hole system, at the same time becomes null in the limiting case the black hole mass tends to zero. In this paper, the stability and the phase transition of the quantum-corrected Schwarzschild black hole are investigated based on this modified temperature. For that, the thermodynamic quantities like the local temperature, the heat capacity, and the off-shell free energy are calculated. The results show that the free energy of the black hole follows the characteristic swallow-tail behavior, implying the existence of an unstable intermediate black hole state quickly decaying into the stable small or large black hole.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,Astronomy and Astrophysics,Nuclear and High Energy Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3