Affiliation:
1. Laboratory of Theoretical Physics, Department of Physics, University of Puerto Rico, P. O. Box 23343, San Juan, PR 00931, USA
Abstract
In braneworld models, Spacetime-Matter and other Kaluza–Klein theories, our spacetime is devised as a four-dimensional hypersurface orthogonal to the extra dimension in a five-dimensional bulk. We show that the FRW line element can be "reinvented" on a dynamical four-dimensional hypersurface, which is not orthogonal to the extra dimension, without any internal contradiction. This hypersurface is selected by the requirement of continuity of the metric and depends explicitly on the evolution of the extra dimension. The main difference between the "conventional" FRW, on an orthogonal hypersurface, and the new one is that the latter contains higher-dimensional modifications to the regular matter density and pressure in 4D. We compare the evolution of the spacetime in these two interpretations and find that a wealth of "new" physics can be derived from a five-dimensional metric if it is interpreted on a dynamical (non-orthogonal) 4D hypersurface. In particular, in the context of a well-known cosmological metric in 5D, we construct a FRW model which is consistent with the late accelerated expansion of the universe, while fitting simultaneously the observational data for the deceleration parameter. The model predicts an effective equation of state for the universe, which is consistent with observations.
Publisher
World Scientific Pub Co Pte Lt
Subject
General Physics and Astronomy,Astronomy and Astrophysics,Nuclear and High Energy Physics
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献