Hierarchical controlled quantum communication via the χ state under noisy environment

Author:

Wang Nian-Nian1,Ma Song-Ya123,Li Xiang1

Affiliation:

1. School of Mathematics and Statistics, Henan University, Kaifeng 475004, China

2. Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China

3. Henan Engineering Research Center for Artificial Intelligence Theory and Algorithms, Henan University, Kaifeng 475004, China

Abstract

Wang et al. first studied hierarchical quantum information splitting of an arbitrary single-qubit state via the [Formula: see text] state as the entangled channel. There exists a hierarchy among the three receivers as far as the power to recover the teleported state is concerned. But the scheme is considered in ideal environment. In this paper, we reinvestigate the scheme in amplitude-damping and phase-damping noises. The fidelity and average fidelity are adopted to quantify the effect of noise. It is found that they are both dependent on the coefficients of the teleported state and the noise parameter. Moreover, we put forward a novel deterministic scheme to realize hierarchical controlled remote preparation of an arbitrary single-qubit state. Comparing with the previous scheme via the [Formula: see text] state, the sender does not need to perform information dividing due to the subtly constructed measurement basis. We also consider the proposed scheme under noisy environment.

Funder

the National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,Astronomy and Astrophysics,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3