NEUTRINO ENERGY LOSS AT MATTER-RADIATION DECOUPLING PHASE

Author:

IBRAHIM UNGKU FERWANI SALWA UNGKU1,AHMAD NOR SOFIAH2,YUSOF NORHASLIZA2,KASSIM HASAN ABU2

Affiliation:

1. Centre for Foundation Studies in Science, University of Malaya, 50603 Kuala Lumpur, Malaysia

2. Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia

Abstract

Neutrinos are produced copiously in the early universe. Neutrinos and antineutrinos ceased to be in equilibrium with radiation when the weak interaction rate becomes slower than the rate expansion of the universe. The ratio of the temperature of the photon to the temperature of the neutrino at this stage is Tγ/Tν = (11/4)1/3. We investigate the neutrino energy loss due to the oscillation of the electron neutrino into a different flavor in the charged-current interaction of νe-e- based on the work of Sulaksono and Simanjuntak. The energy loss from the neutrinos ΔEν during the decoupling of the neutrinos with the rest of the matter would be a gain in the energy of the electrons and can be obtained from the integration of stopping power equation ΔEν = (dEν/dT-1)dT-1 where Eν and T are the energy of the neutrinos and the temperature respectively. When the universe expands and matter-radiation decouples, an extra energy will be transferred to the photons via the annihilation of the electron-positron pairs, e++e-→γ+γ. This consequently will increase the temperature of the photons. The net effect to the lowest order is an increase in the ratio of the photon temperature to the neutrino temperature. The magnitude of energy loss of the neutrino is ∼10-4-10-5 MeV for the probability of conversion of νe → νi (i = μ,τ) between 0 to 1.0.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,Astronomy and Astrophysics,Nuclear and High Energy Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3