CHRONOMETRIC INVARIANCE AND STRING THEORY

Author:

POLLOCK M. D.12

Affiliation:

1. L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, Ulitsa Kosygina 2, Moscow 117940, Russia

2. V. A. Steklov Mathematical Institute, Russian Academy of Sciences, Ulitsa Gubkina 8, Moscow 119991, Russia

Abstract

The Einstein–Hilbert Lagrangian R is expressed in terms of the chronometrically invariant quantities introduced by Zel'manov for an arbitrary four-dimensional metric gij. The chronometrically invariant three-space is the physical space γαβ = -gαβ+e γαγβ, where e = g00 and γα = g/g00, and whose determinant is h. The momentum canonically conjugate to γαβ is [Formula: see text], where [Formula: see text] and ∂t≡ e 0 is the chronometrically invariant derivative with respect to time. The Wheeler–DeWitt equation for the wave function Ψ is derived. For a stationary space-time, such as the Kerr metric, παβ vanishes, implying that there is then no dynamics. The most symmetric, chronometrically-invariant space, obtained after setting ϕ = γα = 0, is [Formula: see text], where δαβ is constant and has curvature k. From the Friedmann and Raychaudhuri equations, we find that λ is constant only if k=1 and the source is a perfect fluid of energy-density ρ and pressure p=(γ-1)ρ, with adiabatic index γ=2/3, which is the value for a random ensemble of strings, thus yielding a three-dimensional de Sitter space embedded in four-dimensional space-time. Furthermore, Ψ is only invariant under the time-reversal operator [Formula: see text] if γ=2/(2n-1), where n is a positive integer, the first two values n=1,2 defining the high-temperature and low-temperature limits ρ ~ T±2, respectively, of the heterotic superstring theory, which are thus dual to one another in the sense T↔1/2π2α′T.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,Astronomy and Astrophysics,Nuclear and High Energy Physics

Reference41 articles.

1. R. Arnowitt, S. Deser and C. W. Misner, Gravitation, An Introduction to Current Research, ed. L. Witten (Wiley, 1962) p. 227.

2. Consistency of the Canonical Reduction of General Relativity

3. General Relativity

4. M. J. Duff, Quantum Gravity 2, eds. C. J. Isham, R. Penrose and D. W. Sciama (Clarendon Press, 1981) p. 81.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the thermodynamics of the cosmological apparent horizon;The European Physical Journal Plus;2015-11

2. World-sheet stability, space-time horizons and cosmic censorship;The European Physical Journal Plus;2014-11

3. Superstring symmetries and space-time dimensionality;The European Physical Journal Plus;2014-06

4. On Gravitational Effects in the Schrödinger Equation;Foundations of Physics;2014-03-01

5. ON THE THERMODYNAMICS OF COSMIC DUST;Acta Physica Polonica B;2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3