Deep learning-assisted Hubble parameter analysis

Author:

Salti Mehmet12ORCID,Kangal Evrim Ersin3ORCID,Zengin Bilgin45ORCID

Affiliation:

1. Wisnet Technology Inc, Technoscope Technology Development Zone, Mersin University, Ciftlikkoy Campus, Mersin, Turkey

2. Department of Business Information Management, Graduate School of Social Sciences, Mersin University, Mersin, TR-33343, Turkey

3. Computer Technology and Information Systems, School of Applied Technology and Management of Erdemli, Mersin University, Mersin, TR-33740, Turkey

4. Department of Electrical and Electronic Engineering, Faculty of Engineering, Munzur University, Tunceli, TR-62000, Turkey

5. Department of Computational Science and Engineering, Graduate School, Munzur University, Tunceli, TR-62000, Turkey

Abstract

We turn our attention on evaluating the most recent Hubble parameter data measured via the differential evolution of cosmic-chronometers from a deep learning perspective. To achieve this goal, we start our investigation by introducing the selected theoretical setup and compiling the most recent statistical data obtained in cosmology experiments. Then we implement a tuned version of the long-short term memory (LSTM) architecture and run it to predict possible values of the Cosmic Hubble parameter for different red-shift states. Since we observe a good correlation between the observed and predicted datasets of the Hubble parameter, we conclude that the machine learning approaches can play important roles in the future cosmology investigations.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3