MONG: An extension to galaxy clusters

Author:

Rebecca Louise12,Kenath Arun2ORCID,Sivaram C.3

Affiliation:

1. Department of Physics, Christ Junior College, Bengaluru, 560029, Karnataka, India

2. Department of Physics and Electronics, CHRIST (Deemed to be University), Bengaluru, 560029, Karnataka, India

3. Indian Institute of Astrophysics, Bengaluru, 560034, Karnataka, India

Abstract

The presence of dark matter (DM), though well established by indirect evidence, is yet to be observed directly. Various DM detection experiments running for several years have yielded no positive results. In view of these negative results, we had earlier proposed alternate models by postulating a minimum gravitational field strength (minimum curvature) and a minimum acceleration. These postulates led to the modified Newtonian dynamics and modified Newtonian gravity (MONG). The observed flat rotation curves of galaxies were also accounted for through these postulates. Here, we extend these postulates to galaxy clusters and model the dynamical velocity-distance curve for a typical cluster such as the Virgo cluster. The radial velocities of galaxies in the Virgo cluster are also obtained through this model. Observations show an inconsistency in the Hubble flow at a mean cluster distance of 17 Mpc, which is expected in regions of high matter density. This decrease in velocity is predicted by our model of modified gravity (MONG). The radial velocity versus distance relation for galaxies in the Virgo cluster obtained using MONG is in agreement with observations.

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Physics and Astronomy,Astronomy and Astrophysics,Nuclear and High Energy Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3