DEFINING INTEGRALS OVER CONNECTIONS IN THE DISCRETIZED GRAVITATIONAL FUNCTIONAL INTEGRALS

Author:

KHATSYMOVSKY V. M.1

Affiliation:

1. Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia

Abstract

Integration over connection type variables in the path integral for the discrete form of the first-order formulation of general relativity theory is studied. The result (a generalized function of the rest of variables of the type of tetrad or elementary areas) can be defined through its moments, i.e. integrals of it with the area tensor monomials. In our previous paper these moments have been defined by deforming integration contours in the complex plane as if we had passed to a Euclidean-like region. In this paper we define and evaluate the moments in the genuine Minkowski region. The distribution of interest resulting from these moments in this non-positively defined region contains the divergences. We prove that the latter contribute only to the singular (δ-function like) part of this distribution with support in the non-physical region of the complex plane of area tensors while in the physical region this distribution (usual function) confirms that defined in our previous paper which decays exponentially at large areas. Besides that, we evaluate the basic integrals over which the integral over connections in the general path integral can be expanded.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,Astronomy and Astrophysics,Nuclear and High Energy Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the gravitational diagram technique in the discrete setup;International Journal of Modern Physics A;2023-09-30

2. On the discrete version of the Reissner–Nordström solution;International Journal of Modern Physics A;2022-04-30

3. On the discrete version of the Kerr geometry;International Journal of Modern Physics A;2021-07-07

4. On the Discrete Version of the Schwarzschild Problem;Universe;2020-10-17

5. On the nonperturbative graviton propagator;International Journal of Modern Physics A;2018-12-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3