How the spin-orbit interaction appears with the same order of a non-commutative change of framework for relativistic fermions

Author:

Derakhshani Z.1,Ghominejad M.1

Affiliation:

1. Physics Department, Semnan University, Semnan, Iran

Abstract

In this research, in a difficult but absolutely precise way of calculation, we show how a very tiny amount of a non-commutative change of quantum space would appear almost as big as a normal physical interaction, namely the Rashba spin-orbit interaction, for relativistic fermions. Hence, in order to show that, we firstly solve a relativistic equation of motion of a Dirac particle, influenced by a typical harmonic energy-dependent interaction for commutative and non-commutative frameworks via the Nikiforov–Uvarov exact approach. Then to study perturbation effects of a spin-orbit interaction, we apply it for both mentioned frameworks, obtaining their energy polynomial relations and discriminant formula to precisely extract all physical-admissible roots of their quartic equations. In this step, we analyze the behaviors of their quartic eigenvalue polynomials in four sections and accurately compare them one by one. Finally, we distinctly show that the magnitude of the physical spin-orbit perturbation appears, almost of the same order of imposing a non-commutative geometry change of framework, as an outstanding result.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,Astronomy and Astrophysics,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3