Affiliation:
1. University of Zielona Góra, Institute of Physics, ul. Prof. Z. Szafrana 4a, 65–516 Zielona Góra, Poland
Abstract
We analyze general uncertainty relations and we show that there can exist such pairs of non-commuting observables [Formula: see text] and [Formula: see text] and such vectors that the lower bound for the product of standard deviations [Formula: see text] and [Formula: see text] calculated for these vectors is zero: [Formula: see text]. We also show that for some pairs of non-commuting observables the sets of vectors for which [Formula: see text] can be complete (total). The Heisenberg, [Formula: see text], and Mandelstam–Tamm (MT), [Formula: see text], time–energy uncertainty relations ([Formula: see text] is the characteristic time for the observable [Formula: see text]) are analyzed too. We show that the interpretation [Formula: see text] for eigenvectors of a Hamiltonian [Formula: see text] does not follow from the rigorous analysis of MT relation. We show also that contrary to the position–momentum uncertainty relation, the validity of the MT relation is limited: It does not hold on complete sets of eigenvectors of [Formula: see text] and [Formula: see text].
Funder
Polish Ministry of Science and Higher Education
Publisher
World Scientific Pub Co Pte Lt
Subject
General Physics and Astronomy,Astronomy and Astrophysics,Nuclear and High Energy Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献