Affiliation:
1. Sciences Faculty, Physics Group, Payame Noor University, P. O. Box 19395-4697, Tehran, Iran
Abstract
Alpha-decay half-lives of the even–even superheavy isotopes with proton numbers [Formula: see text] have been calculated within the cluster model. The alpha-daughter potential was constructed by employing the density-dependent double-folding model with a realistic nucleon–nucleon interaction whose exchange part has a finite range approximation. The half-lives were calculated using Wentzel–Kramers–Brillouin (WKB) approximation with the alpha preformation factor. The results have shown that the computed alpha-decay half-lives were in good agreement with their counterpart calculated by different semi-empirical approaches. The obtained results have also shown a negative linear relationship between the logarithm of the preformation factor and the fragmentation potential for the understudy isotopes. Also, the calculated results have shown that isotopes [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] had longer half-lives than their adjacent isotopes, which indicates that the corresponding neutron or proton numbers have a magical or semi-magical properties. Furthermore, we have studied the competition between alpha-decay and spontaneous fission to predict possible decay modes from the even–even isotopes [Formula: see text]. The results revealed that the isotopes [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] had alpha-decay as a predominant mode of decay and the nuclei [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] could not survive from the spontaneous fission. We hope that the theoretical prediction could be helpful for future investigation in this field.
Publisher
World Scientific Pub Co Pte Lt
Subject
General Physics and Astronomy,Astronomy and Astrophysics,Nuclear and High Energy Physics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献