Affiliation:
1. Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia
Abstract
Faddeev formulation of general relativity (GR) is considered where the metric is composed of ten vector fields or a ten-dimensional tetrad. Upon partial use of the field equations, this theory results in the usual general relativity (GR). Earlier, we have proposed first-order representation of the minisuperspace model for the Faddeev formulation where the tetrad fields are piecewise constant on the polytopes like four-simplices or, say, cuboids into which [Formula: see text] can be decomposed, an analogue of the Cartan–Weyl connection-type form of the Hilbert–Einstein action in the usual continuum GR. In the Hamiltonian formalism, the tetrad bilinears are canonically conjugate to the orthogonal connection matrices. We evaluate the spectrum of the elementary areas, functions of the tetrad bilinears. The spectrum is discrete and proportional to the Faddeev analog [Formula: see text] of the Barbero–Immirzi parameter [Formula: see text]. The possibility of the tetrad and metric discontinuities in the Faddeev gravity allows to consider any surface as consisting of a set of virtually independent elementary areas and its spectrum being the sum of the elementary spectra. Requiring consistency of the black hole entropy calculations known in the literature we are able to estimate [Formula: see text].
Publisher
World Scientific Pub Co Pte Lt
Subject
General Physics and Astronomy,Astronomy and Astrophysics,Nuclear and High Energy Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献