MAXIMALLY SYMMETRIC MINIMAL UNIFICATION MODEL SO(32) WITH THREE FAMILIES IN TEN-DIMENSIONAL SPACETIME

Author:

WU YUE-LIANG1

Affiliation:

1. Kavli Institute for Theoretical Physics China (KITPC), Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100080, China

Abstract

Based on a maximally symmetric minimal unification hypothesis and a quantum charge-dimension correspondence principle, it is demonstrated that each family of quarks and leptons belongs to the Majorana–Weyl spinor representation of 14 dimensions that relate to quantum spin-isospin-color charges. Families of quarks and leptons attribute to a spinor structure of extra six dimensions that relate to quantum family charges. Of particular, it is shown that ten dimensions relating to quantum spin-family charges form a motional ten-dimensional quantum spacetime with a generalized Lorentz symmetry SO (1, 9), and ten dimensions relating to quantum isospin-color charges become a motionless ten-dimensional quantum intrinsic space. Its corresponding 32-component fermions in the spinor representation possess a maximal gauge symmetry SO (32). As a consequence, a maximally symmetric minimal unification model SO (32) containing three families in ten-dimensional quantum spacetime is naturally obtained by choosing a suitable Majorana–Weyl spinor structure into which quarks and leptons are directly embedded. Both resulting symmetry and dimensions coincide with those of type I string and heterotic string SO (32) in string theory.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,Astronomy and Astrophysics,Nuclear and High Energy Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Discrete symmetries in the Kaluza-Klein theories;Journal of High Energy Physics;2014-04

2. Two Higgs bi-doublet left-right model with spontaneous P and CP violation;Science in China Series G: Physics, Mechanics and Astronomy;2008-11-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3